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Yang-Lee zeros of the two- and three-state Potts model defined onf3 Feynman diagrams
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We present both analytical and numerical results on the position of partition function zeros on the complex
magnetic field plane of theq52 state~Ising! and theq53 state Potts model defined onf3 Feynman diagrams
~thin random graphs!. Our analytic results are based on the ideas of destructive interference of coexisting
phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of
the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit
circle, although no circle theorem is known in this case of random graphs. For theq53 state Potts model, our
perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are
confirmed by finite lattice numerical calculations.

DOI: 10.1103/PhysRevE.67.066108 PACS number~s!: 05.50.1q, 05.70.Fh, 64.60.Cn, 75.10.Hk
ne

e
-

ity
ld
e
t

e
a
o

d

e
ic
is
e
e

ns

y

ce

-
eter
of
al-

free
e of
ag-
the
ions

o-
e
an-
een
ver-
ical
par-
e
rated

m

ate
no
of
is

be-
eo-
ar
s
re
I. INTRODUCTION

The Ising model is known to be exactly solvable in o
dimension and also in two dimensions in the absence
magnetic field. The magnetic field breaks theZ2 symmetry,
which complicates a possible exact solution of the mod
However, it is still possible to prove, for an arbitrary tem
perature, anexacttheorem~see~Ref. @1#! for the location of
the zeros of the partition function on the complex fugac
u5e2H plane, whereH stands for a complex magnetic fie
measured in units of 1/b5T. Henceforth, these zeros will b
called Yang-Lee zeros. The theorem establishes that
Yang-Lee zeros are located on the unit circleuuku51, k
51, . . . ,n. Here, n is the number of sites of the lattic
whose details such as coordination number and topology
not important for the proof. The symmetry under a change
sign of the magnetic fieldu→1/u is a key factor but it is not
sufficient for the proof. The proof is a bit technical an
strongly depends on the form of the polynomialsPn(u) in
the partition function. A simpler proof would certainly b
welcome. The authors of Ref.@2# have suggested an analyt
way to find the location of the partition function zeros. It
assumed that for a system defined in a periodic volumV
5Ld with r different phases, it is possible to write down th
partition function of the system in terms of some functio
f l( l 51, . . . ,r ) as follows:

Z5(
l 51

r

qle
2bV fl1O~e2L/L0e2bV f!, ~1!

whereql is the degeneracy of the corresponding phasel and
f l is interpreted as its metastable free energy. The quantitL0
is of the order of correlation length, whilef 5minRe(f k).

*Email address: lclaudio@fatecsp.br
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Following Ref. @2#, we can use a destructive interferen
condition in order to find the zeros ofZ within O(e2L/L0):

Ref l ,L
eff 5Ref m,L

eff ,Ref k,L
eff for all kÞ l ,m, ~2!

bV~ Im f l ,L
eff 2Im f m,L

eff !5p mod~2p!, ~3!

where f l
eff5 f l2(bV)21ln ql . It is assumed that the meta

stable free energies are functions of some complex param
z which in our case is the magnetic field. The continuity
the real part of the free energy across the line of zeros
ready appeared in Ref.@3#. It is clear that Eqs.~2! and~3! are
useful whenever we have a closed expression for the
energies of the different phases of the system. In the cas
the two-dimensional Ising model in the presence of a m
netic field, although we do not have exact expressions for
free energies, we can use low temperature expans
~LTE’s! and the symmetryH→2H as in Ref.@2# to furnish
a simple proof of the Lee-Yang theorem valid in the therm
dynamic limit and for low temperatures. In this work, w
apply the same ideas for a particular case of fluctuating r
dom lattice. For such lattices, no circle theorem has b
proven. The spin degrees of freedom are placed on the
tices of Feynman diagrams that are themselves dynam
degrees of freedom and need to be summed over in the
tition function with appropriate combinatorial factors. In th
case where the diagrams have double lines and are gene
by a randomN3N matrix model~see Refs.@4,5#!, their sum
mimics, in the continuum limit, the Ising model on rando
surfaces~two-dimensional gravity!. Early @6,7# and recent
@8# numerical results on graphs of planar topology indic
that the Yang-Lee zeros lie on the unit circle although
circle theorem exists in this case. Notice that the form
polynomials used in the proof of the Lee-Yang theorem
not preserved by their linear combinations. However, we
lieve that there might be a generalization of the circle th
rem for the new class of polynomials obtained by line
combinations with positive coefficients of partition function
of the Ising type. In fact, further support to this conjectu
©2003 The American Physical Society08-1
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has been given in Ref.@9#, where we studied the effect o
topology of the graphs on the position of the Yang-Lee zer
We have noticed that changing from the planar to the to
topology, the Yang-Lee zeros remained on the unit cir
with a small change in their positions, which is in agreem
with the existence of an underlying robust theorem. Furth
more, in order to take the continuum limit we take lar
matricesN→` that allows one to find~see Ref.@4#! with the
help of the orthogonal polynomial technique a closed exp
sion for the free energy even in the presence of magn
field. Thus, an analytic study of the free-energy singularit
is possible and leads one to pure imaginary values for
magnetic field~see Ref.@6#!, i.e., uuku51. Of course, this is
only correct in the thermodynamic limit. On the other han
the same issue of Yang-Lee zeros on a dynamical lattice
be studied in a simplified model of thin graphs where ma
ces become numbers (N51) and our final partition function
becomes a linear combination of partition functions
single-line Feynman diagrams. In this case, no random
face interpretation exists and the model exhibits a ferrom
netic phase transition with mean field exponents, see
@10#, and references therein. Once again numerical results
finite number of verticesn indicate the unit circle as the
locus of the Yang-Lee zeros@9#. However, since we do no
have a random surface interpretation, the results of Ref.@6#
do not go through the case of thin graphs. In particular,
location of the Yang-Lee zeros is not known even in t
thermodynamic limit. In this work, we analyze this questi
starting from a closed expression for the free energy of
model obtained in the thermodynamic limit by means o
saddle point approximation both for the Ising and the Po
model. Then, we use the destructive interference equation
Ref. @2# to find out the location of the Yang-Lee zeros. U
fortunately, the presence of a magnetic field complicates
form of the resulting expression for the free energy, but
argument based on low temperature expansions and a
metry (H→2H) between different saddle point solution
will allow us to prove that the Yang-Lee zeros of the Isi
model on thin graphs should be on the unit circle in t
thermodynamic limit. The proof is exact for the whole ran
of temperatures for which the LTE’s converge. For the c
-
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of the Potts model, we have not been able to promote
low temperature results to an exact level, but perturbativ
we show that the Yang-Lee zeros should lie outside~but
close to! the unit circle for low temperatures. The preci
location of the zeros seem to change with the temperatur
a complex way. We also display numerical results in agr
ment with our analytic findings.

II. THE PARTITION FUNCTION ON THIN GRAPHS

We can define theq-state Potts model as a generalizati
of the Ising model (q52), where on each site of the lattic
there is a spin degree of freedoms that can takeq different
valuess51,2, . . . ,q. By summing over all spin configura
tions$s i% on a given static latticeGn of n vertices, we obtain
the partition functionZq(Gn). In the presence of a stati
magnetic fieldH in the s51 direction, we have

Zq~Gn!5(
$s i %

expS b(
^ i , j &

D ds i ,s j
12H(

i 51

n

d1,s i
, ~4!

where (^ i , j & is a sum over all bonds~propagators! of Gn
including loop bonds which connect a site~vertex! to itself.
Here, we are interested in the case where the lattice
dynamical degree of freedom and the final partition funct
is obtained by summing over allGn with n vertices:

Z q
(n)5 (

k51

K(n)

Zq~Gn
(k)!. ~5!

In our case,K(n) will be the total number of Feynman
graphsGn

(k) with n cubic verticesf3 and no external legs
This clearly includes graphs of different topologies. Ea
Zq(Gn

(k)) as well asZ q
(n) will be proportional to a polyno-

mial Pn(u) in the fugacityu5e2H. We take cubic vertices
since these are the simplest ones after the trivial quadr
casef2, which corresponds to aD51 lattice. The partition
functionsZ q

(n) can be generated by integrating overq zero-
dimensional fieldsX1 , . . . ,Xq representing theq different
spin statess51,2, . . . ,q, respectively,
Z q
(2n)5

Tn

2p i R dg

g2n11 S E Dm expH 2
1

2 F(
i 51

q

Xi
222c(

i . j
XiXj2

2g

3 S e2HX1
31(

i 52

q

Xi
3D G J

E Dm expF2
1

2 S (
i 51

q

Xi
222c(

i . j
XiXj D G D , ~6!
ld,
g-
whereDm5) i 51
q dXi andTn is a numerical factor indepen

dent of the magnetic field and the temperature, which is n
essary to get rid of the bad asymptotic behavior of the
decoratedf3 graphs. The contour integral is necessary
single out the termg2n containing 2n cubic vertices. Notice
thatZ q

(n) vanishes for odd number of vertices; therefore,
c-
-

o

e

can write the total number of vertices as 2n. The constantc
will be related to the temperature. To each cubic vertex (X1

3)
representing a spin in the direction of the magnetic fie
there will be au5e2H factor in agreement with the parama
netic interaction term in Eq.~4!. The quadratic terms in the
argument of the exponentials in Eq.~6! are responsible for
8-2



th

s.

l-

-

,

e

h

g
a

d

-

a-

the

-

,
t

ed

-
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the free propagatorŝXiXj& ~or bondŝ s is j&) between theq
different vertices that associate with the statess i . Taking
ratios of the propagators and comparing with the ratios of
corresponding Boltzmann weights of Eq.~4!, we identify the
parameterc with a function of the temperature as follow
The action in the numerator of Eq.~6! can be written as

Sg5
1

2 (
i , j 51

q

XiKi j Xj2
g

3 S e2H X1
31(

i 52

q

Xi
3D , ~7!

where we have introduced the kineticq3q matrix Ki j 5
2c, if iÞ j and Kii 51. We can check that detK5(1
1c)q21@12(q21)c#. The propagators are given by the e
ements of the inverse matrixKi j

215(detK)21c if iÞ j and
Kii

215(detK)21@12(q22)c#. Therefore, using the Boltz
mann weights from Eq.~4! at vanishing magnetic field we
have

^XiXj&

^XiXi&
5

c

@12~q22!c#
5

eEi j (H50)

eEii (H50)
5e2b ~8!

and, consequently,

c5~eb1q22!21. ~9!

Therefore, corresponding to 0<T<` we have, respectively
the compact range 0<c<1/(q21).

In the thermodynamic limitn→`, one can evaluate th
free energy

f q
(2n)52

1

2n
ln Z q

(2n) ~10!

by means of a saddle point approximation as follows. T
fist step is to rescale the zero-dimensional fieldsXi

→(1/g)X̃i such that Sg(Xi ,u,c)→(1/g2) Sg51(X̃i ,u,c).
Next, we decouple the contour integral over the coupling
from the integral over the zero-dimensional fields by
change of variablesg→g̃ASg51. Finally, we have

f q5 lim
n→`

F2
1

2n
ln E Dme2n ln Sg511OS 1

nD G . ~11!

Therefore, the free energy per site is given in the thermo
namic limit by @11#

f q5 1
2 ln S̃g51 , ~12!

whereS̃g51 corresponds toSg51 at a solution of the saddle
point equations]Xi

Sg5150. Henceforth, it is always as

sumed thatg51 and we will treat theq52 ~Ising! state and
the q53 state Potts model separately.

III. ISING MODEL

Aligning the magnetic field in the direction ofs1, which
is represented by the fieldX1, and using the notationX1
06610
e

e

y-

5x andX25y, we have, respectively, the saddle point equ
tions ]xS505]yS:

x2cy5ux2,

y2cx5y2. ~13!

Using these equations we can write down the action at
saddle point@12# in a quadratic form:

S̃5 1
6 @x21y222cxy#. ~14!

From Eq.~13! we have

x5~1/c!~y2y2!, ~15!

uy~12y!21c~y21!1c350. ~16!

In the absence of magnetic field (u51), the solutions of Eq.
~16! simplify ~see Ref.@13#! and we have two low tempera
ture solutions below the critical valueccr51/3 and a high
temperature~HT! solution valid for the entire range 0<c
<1:

yLT65 1
2 @11c7A~123c!~11c!#, ~17!

yHT512c. ~18!

Defining the magnetization

m5K ux3

~ux31y3!
L , ~19!

we can check thatyLT1 and yLT2 correspond, respectively
to m.1/2 and m,1/2. Both solutions collapse a
m(xHT ,yHT)51/2 for c51/3. Substituting Eqs.~17!, ~18!,
and ~15! back in Eq.~14!, we have

S̃LT5
~11c!2~122c!

6
, ~20!

S̃HT5
~12c!3

3
. ~21!

Notice that both low temperature solutions have furnish
the same actionS̃LT .

The presence of a nonvanishing magnetic field (uÞ1)
makes the solution of the cubic equation~16! awkward and
not very informative. We have solved Eq.~16! instead as a
Taylor expansion aroundc50 ~LTE!. We found three expan
sionsyLT6 and yHT which reduce to Eqs.~17! and ~18! at
u51. They furnish the following actions :

S̃LT15
1

6u2
2

c2

2u2
2

c3

3u3
1

~u221!c4

2u4
1O~c5!, ~22!

S̃LT25
1

6
2

c2

2
2

uc3

3
2

~u221!c4

2
1O~c5!, ~23!
8-3
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S̃HT5
11u2

6u2
2

c

u
1

~11u2!c2

2u2
1

~u423u211!c3

3u3

1
~u221!2~11u2!c4

2u4
1O~c5!. ~24!

Clearly, S̃LT1 and S̃LT2 collapse into Eq.~20! at u51. For
u.1(H.0), f LT1, f LT2 and the system is magnetized
the direction of the magnetic field (x direction!, while the
situation is reversed foru,1(H,0) as expected. In order t
locate the Yang-Lee zeros ofZq52

(2n) in the thermodynamic
limit, we first assumeu5reiu and then solve Eqs.~2! and
~3!:

Re~ f LT12 f LT2!50, ~25!

Im f LT25Im f LT11
~2k21!

bVp
. ~26!

There are two basic factors that will allow us to locate e
actly the Yang-Lee zeros for the whole convergence rang
the LTE’s without really worrying about the numerical d
tails of the coefficients of expansions~22!–~24!. First of all,
notice that forH→2` ~or u→0) the cubic equation~16!
has a unique solutiony(u→0)512c2 and, therefore, there
must be at least one LTE that is well behaved foru→0 and
terminate at the term proportional toc2. Of course, this can
only be identified withS̃LT2 which implies that their coeffi-
cients can only involve positive powers ofu, i.e.,

S̃LT2~u,c!5 (
n50

`

an~u!cn, ~27!

where eachan(u) is a polynomial inu. The next important
factor is a symmetry of the saddle point equations~13! which
relate solutions withH.0 to solutions withH,0. Namely,
Eq. ~13! is invariant under

u→1/u, ~28!

xi~1/u,c!→uyj~u,c!, ~29!

yi~1/u,c!→uxj~u,c!, ~30!

where (xi ,yi) and (xj ,yj ) are, in principle, distinct solutions
of Eq. ~13!. Back in Eq.~14! we are led to the relation

S̃i S 1

u
,cD5u2S̃j~u,c!. ~31!

The labelsi , j indicate that the saddle point solutions on bo
sides of Eq.~31! do not need to be the same. From the fi
terms of the LTE’s in Eqs.~22!–~24! and Eq.~31!, we have
the identification below

S̃LT1~u,c!5
1

u2
S̃LT2S 1

u
,cD , ~32!
06610
-
of

t

S̃HT~u,c!5
1

u2
S̃HTS 1

u
,cD . ~33!

Putting back in the definition of the free energy and us
Eq. ~27!, we obtain

2~ f LT22 f LT1!5 ln u21F ln(
n50

`

an~u!cn2 ln(
n50

`

anS 1

uD cnG .

~34!

Using a051/6 andu5reiu, after expanding the logarithm
we deduce

2 Re~ f LT22 f LT1!52 lnr1 (
n51

`

cn(
k51

B(n)

Ak,n

3cos~ku!S rk2
1

rkD , ~35!

whereB(n) and Ak,n are pure numerical factors. Thus, th
condition Re(f LT22 f LT1)50 imply that the zeros must b
on the unit circleuk5eiuk in the thermodynamic limit. The
condition on the imaginary parts of the free energies w
locate the corresponding anglesuk on the circle as a function
of the temperature. We emphasize that our proof of the ci
theorem for thinf3 graphs hold inside the convergence r
gion of low temperature expansions.

IV. qÄ3 STATE POTTS MODEL

Using the notationX15x,X25y,X35z, and fixing the
magnetic field once again along thex direction, we derive the
saddle point equations,]Xi

S50:

x2c~y1z!5ux2, ~36!

y2c~x1z!5y2, ~37!

z2c~x1y!5z2. ~38!

From the difference of Eqs.~37! and ~38!, we deduce that
there are two groups of solutions, eithery5z or y1z51
1c:

z5y, ~39!

x5
y

c
~12c2y!, ~40!

uy~y1c21!21c~y1c21!12c350; ~41!

z511c2y, ~42!

x65
16@124uc~11c!#1/2

2u
, ~43!

y22~11c!y1c~11c1x!50. ~44!
8-4
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As in the Ising case, it is instructive to first look at the so
tions for vanishing magnetic field (u51). In this case, we
have from the first set of solutions two low temperature
lutions and one high temperature solution:

yLT65zLT65
17@124c~11c!#1/2

2
,

xLT65
112c6@124c~11c!#1/2

2
, ~45!

xHT5yHT5zHT5122c. ~46!

Defining the magnetization

m~q53!5K ux3

ux31y31z3L , ~47!

we identify the labels LT1 and LT2 with solutions such tha
m.1/3 andm<1/3, respectively. The solution LT2 meets
the high temperature solution withm51/3 at c51/5. The
second group of solutions~43! does not furnish foru51 any
new physical solution. Explicitly, for 0<c<(A221)/2, we
have from the second group two real solutions

x15y15
12@124c~11c!#1/2

2
, ~48!

z15
11@124c~11c!#1/2

2
, ~49!

and

x25
11@124c~11c!#1/2

2
, ~50!

y25
11c1u@124c~11c!#1/22cu

2
, ~51!

z25
11c2u@124c~11c!#1/22cu

2
. ~52!

Notice that solution (x1 ,y1 ,z1) corresponds to a permutatio
(x,z)→(z,x) of the solution LT1 given in Eq.~45!, while
the solution (x2 ,y2 ,z2) coincides for 0<c<1/5 with the
permutation (x,z)→(z,x) of the solution LT2. However, its
derivative is discontinuous atc51/5 and the solution devi
ates from LT2 for 1/5,c,(A221)/2. Concluding, we can
safely neglect both solutions of the second group.

Turning on the magnetic field (uÞ1), the solutions of the
cubic equation in Eq.~40! become cumbersome. Once aga
we make a low temperature expansion aroundc50, which
we display below after the substitution in the action. Fro
the first group of solutions (y5z), we have three possibili
ties
06610
-

-
S̃05

112u2

6u2
2c

21u

u2
1

c2

u3
~112u13u2!

1
c3

3u4
~8u4213u3212u212u12!1O~c4!, ~53!

S̃15
1

6u2
2

c2

u2
2

c3~213u!

3u3
1O~c4!, ~54!

S̃25
1

3
2c2c21

c3~1128u!

3
1O~c4!. ~55!

Expanding the second group of solutions (y1z511c), we
have two possibilities

S̃35
1

6
2c22

c3~u14!

3
1O~c4!, ~56!

S̃45
11u2

6u2
2

c

u
2

c2

u
2

c3~21u!

3
1O~c4!. ~57!

Next, we analyze the physical content of all those solutio
First, we notice that in the limit of vanishing magnetic fiel
the only solution that correctly reproduces the LTE
S̃HT(u51,c) is S̃0 and, therefore, we will identify it with the
LTE of S̃HT(u,c). However, the limitu→1 cannot be used
to identify the remaining solutions, since the solutions of t
second groupS̃3 andS̃4 become identical, respectively, toS̃1

and S̃2 for u→1 which on their turn correspond to the LT
of the physical solutionsS̃LT1 and S̃LT2 of the H50 case.1

In order to understand the meaning ofS̃12S̃4, we have to
look at the limitsH→1` (u→`) and H→2` (u→0).
The only LTE solution well behaved foru→` is S̃1 which
will be therefore identified with a strongly magnetized lo
temperature solution, i.e., for this solution we expe
lim

c→0
m51. For u→0, both S̃2 and S̃3 are well behaved

and good candidates, butS̃3 possesses the lowest free ener
~recall f ; ln S) as one can check numerically. Therefore,S̃3
will represent the weakly magnetized phase which satis
lim

c→0
m50. Thus, we have for the free energies of t

physical low temperature solutions:

1Incidentally, we notice that the discontinuous behavior of so
tion ~22! only appears for 1/5,c,(A221)/2 which is outside the
convergence region of the LTE of Eq.~22!. Remember that for 0

<c<1/5, bothS̃LT2 and Eq.~22! are identical, which explains why

S̃4 and S̃2 become equal atu51 and low temperatures.
8-5
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2~ f LT22 f LT1!5 ln S̃32 ln S̃15 ln u21S 4

u
22u22D c3

13c4S 2

u2
2u21

4

u
22u23D 1O~c5!.

~58!

We can find the position of the Yang-Lee zeros pluggingu
5reiu in Eq. ~58! and solving the destructive interferenc
equations~25! and~26!. First, if we look at the leading term
~zero temperature!, we will see from Eqs.~25! and~26! that
the Yang-Lee zeros, in the thermodynamic limit, will be l
cated on the unit circler51 atT50. Our finite size numeri-
cal calculations are in agreement with these expectations~see
Fig. 1!. Adding the next to leading terms of the order ofc2,
we will still have the zeros on the unit circle, but if w
further truncate the LTEs atc3 level the zeros will slightly
move out the unit circle. Indeed, from Eqs.~25! and~58! we
have at the orderc3,

cosu5
r@c32 ln r#

c3~22r2!
. ~59!

Imposing that21<cosu<1, we find numerically for 0<c
<0.5 such that 1<r<r* , wherer* increases with tempera
ture. It is worth commenting that the right hand side of E
~59! is a monotonically decreasing function ofr. Conse-
quently, we have a closed curve outside the unit circle tha
nonsymmetric across the imaginary axis with the farth
point from the origin being (r5r* ,u5p). In Fig. 2, both
our numerical and analytical results are overlapped. The
nite size results seem to tend to the~full line! analytic one in
the thermodynamic limit. In Fig. 2, we have used the tru
cation at the orderc4 instead of Eq.~59!, although they differ

FIG. 1. Yang-Lee zeros ofZq53
(2n) at zero temperature,c50, for

graphs with 2n520 (L), 2n540 (3), and 2n5200 (s) vertices.
The closed curve is the unit circle.
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by a small amount, including thec4 terms makes the analyti
results closer to the numerical ones. Thec4 terms are quite
complex to be displayed here explicitly.

V. T\`

The results of the previous two sections hold for a ran
of temperatures for which the LTE’s converge@14#. In gen-
eral, we have not been able to go beyond these tempera
analytically. One exception is the caseT→` @or c→1/(q
21)] for which a subtle decoupling of the zero-dimension
fields take place for arbitraryq similar to what happens fo
the Ising model (q52), see Ref.@9#. The key point is to take
a particular scaling for the couplingg appearing in action~7!
asc→1/(q21). Namely, the matrixKi j appearing in Eq.~7!
has q21 degenerate eigenvaluesl j511c( j 51,2, . . . ,q
21), and the nondegenerate onelq512(q21)c. In order
to decouple the fieldsXj in the action, it is natural to diago
nalize the matrixKi j through an orthogonal transformation2

Xi→Ai j Xj and rescaleXi→Xĩ /Al i . The Jacobian is can
celed out in the calculation ofZ q

(2n) . After these changes
the action becomes~repeated indices are summed over!

Sg5(
i 51

q X̃i
2

2
2

g

3 FuS A1kX̃k

Alk
D 3

1(
j 52

q S AjkX̃k

Alk
D 3G . ~60!

Apparently, we have just transferred the mixing terms to
higher powers of the potential, however in the limitT→`

2Explicitly, the orthogonal matrix readsAi j 50 if i> j 12, Aiq

51/Aq, and Ai j 521/Aj 1 j 2 if i< j <q21 or j /Aj 1 j 2 if i 5 j
11<q.

FIG. 2. Yang-Lee zeros ofZq53
(2n) at c50.2 for graphs with 2n

520 (L), 2n540 (3), and 2n5200 (s) vertices, compared to
the saddle point result~solid line! and to the unit circle~dashed
line!.
8-6



n
fo
o
la

io

a

ti
th
s

e
hs
e
th

e

m-
that
unit

ith
ter-
y

at
nt
-
s

of
e
ch
ther
ex
-

ak-

ion
es
en

on

e-
ork
ex-
s-

nt

YANG-LEE ZEROS OF THE TWO- AND THREE-STATE . . . PHYSICAL REVIEW E 67, 066108 ~2003!
@c→1/(q21)# we havelq→0, while all other eigenvalues
remain finite. Thus, after the redefinitiong→ḡlq

3/2, we have
in the above limit,

Sg~T→`!5 (
i 51

q21 X̃i
2

2
1

X̃q
2

2
2

ḡ

3 S uA1q
3 1(

j 52

q

Ajq
3 D X̃q

3 .

~61!

Thus, we have decoupled the zero-dimensional fields o
specific point in the parameter space, while preserving in
mation about nontrivial interacting terms. Clearly, this pr
cedure is only useful if we do not care about the singu
behavior of the original variableXq . This is precisely the
case of Eq.~6!. Indeed, the Jacobian fromXi to X̃i , is sin-
gular in the limitT→` but it cancels out because of the rat
in Eq. ~6! SinceAiq51/Aq, we obtain

S~T→`!5(
i 51

q Xi
2

2
2

ḡ

3q3/2
~y1q21!Xq

3 . ~62!

Substituting this action in Eq.~6!, the integrations over
X1 , . . . ,Xq21 cancel out leaving us with an expression th
is finite in the limit c→1/(q21). From theḡ2n term, we
have

Z q
(2n)~T→`!5T̃n~u1q21!2n, ~63!

whereT̃n is a numerical factor independent of the magne
field and the temperature. Therefore, we conclude that
Yang-Lee zeros of theq-state Potts model on thin graph
coalesce exactly at the pointu512q as T→`. The same
result is valid on a static lattice@15#. Again, our numerical
calculations confirm this analytic proof.

VI. CONCLUSION

We have proved that in the thermodynamic limit, the z
ros of the partition function of the Ising model on thin grap
lie exactly on the unit circle in the complex fugacity plan
Our proof is exact in the range of temperatures for which
R

B

cl

y

s
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low temperature expansions converge. For the case of thq
53 Potts model, we do not have theH→2H symmetry
anymore and our results were fairly perturbative in the te
perature. In this case, the zeros lie on closed curves
depend on the temperature. These curves lie outside the
circle and tend to the circle asT→0. Our numerical results
for a small number of vertices seem to be in agreement w
the analytic ones derived by means of the destructive in
ference formulas of Ref.@2#. The numerical results were ver
similar to the static lattice case treated in Ref.@15# for both
the Ising and theq53 Potts model. We should mention th
a part of the motivation for this work came from a rece
progress~see Refs.@10,8#! on using the destructive interfer
ence formulas of Ref.@2# to find analytically the exact curve
formed by the Fisher zeros~complex temperatures! of the
q-state Potts model on thin graphs. However, the results
Refs.@10,8# were derived forH50, and the presence of th
magnetic field complicates the form of the solutions su
that we had to use low temperature expansions. As a fur
work, one might look at the Yang-Lee zeros for compl
temperatures as in Ref.@16# as well as other types of verti
ces. Finally, we mention that, as in Ref.@9#, we have also
looked at connected partition functions obtained by first t
ing the logarithm of the ratio of integrals in Eq.~6! and then
developing the contour integral. The results for the posit
of the Yang-Lee zeros were qualitatively similar to the on
reported here. We hope to return in the future to the op
problem of proving the circle theorem for the Ising model
random lattices with finite number of vertices.
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Kotecký, Phys. Rev. Lett.84, 4794~2000!.
@3# C. Itzykson, R.B. Pearson, and J.B. Zuber, Nucl. Phys.

Field Theory Stat. Syst.220 †FS8‡, 415 ~1983!.
@4# V.A. Kazakov, Phys. Lett. B119, 140 ~1986!.
@5# D. Boulatov and V.A. Kazakov, Phys. Lett. B186, 379~1987!.
@6# M. Staudacher, Nucl. Phys. B336, 349 ~1990!.
@7# J. Ambjorn, K.N. Anagnostopoulos, and U. Magnea, Nu

Phys. B~Proc. Suppl.! 63, 751 ~1998!; Mod. Phys. Lett. A12,
1605 ~1997!.

@8# W. Janke, D.A. Johnston, and M. Stathakopoulos, Nucl. Ph
B 614, 494 ~2001!.

@9# L.C. de Albuquerque, N.A. Alves, and D. Dalmazi, Nucl. Phy
.

:

.

s.

.

B: Field Theory Stat. Syst.580 †FS‡, 739 ~2000!.
@10# B.P. Dolan, W. Janke, D.A. Johnston, and M. Stathakopou

J. Phys. A34, 6211~2001!.
@11# C. Bachas, C. de Calan, and P. Petropoulos, J. Phys. A27,

6121 ~1994!.
@12# V.A. Kazakov, Nucl. Phys. B~Proc. Suppl.! 4, 93 ~1988!.
@13# D.A. Johnston and P. Plechac, J. Phys. A30, 7349~1997!.
@14# G. Bonnet, Phys. Lett. B459, 575 ~1999!; B. Eynard and G.

Bonnet, ibid. 463, 273 ~1999!; P. Zinn-Justin, e-print
cond-mat/9903385; G. Bonnet and F. David, Nucl. Phys.
Field Theory Stat. Syst.552 †FS‡, 511 ~1999!.

@15# S.-Y. Kim and R.J. Creswick, Phys. Rev. Lett.81, 2000~1998!.
@16# V. Matveev and R. Shrock, Phys. Rev. E53, 254~1996!; Phys.

Lett. A 215, 271 ~1996!.
8-7


