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Yang-Lee zeros of the two- and three-state Potts model defined ap® Feynman diagrams
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We present both analytical and numerical results on the position of partition function zeros on the complex
magnetic field plane of thg=2 state(Ising) and theq=3 state Potts model defined @ Feynman diagrams
(thin random graphs Our analytic results are based on the ideas of destructive interference of coexisting
phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of
the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit
circle, although no circle theorem is known in this case of random graphs. FqrtBestate Potts model, our
perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are
confirmed by finite lattice numerical calculations.
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I. INTRODUCTION Following Ref.[2], we can use a destructive interference
condition in order to find the zeros & within O(e™"/‘0):
The Ising model is known to be exactly solvable in one
dimension and also in two dimensions in the absence of Refﬁf{:RefﬁfL<Ref§ﬁL for all k#1,m, (2)
magnetic field. The magnetic field breaks the symmetry,
which complicates a possible exact solution of the model. ﬂV(Imfﬁff_—ImfﬁfL)zwmodZM, (3)

However, it is still possible to prove, for an arbitrary tem-
perature, arexacttheorem(see(Ref.[1]) for the location of ~ where f#=f,—(8V) !Inq. It is assumed that the meta-
the zeros of the partition function on the complex fugacitystable free energies are functions of some complex parameter
u=e?" plane, whereH stands for a complex magnetic field z which in our case is the magnetic field. The continuity of
measured in units of B=T. Henceforth, these zeros will be the real part of the free energy across the line of zeros al-
called Yang-Lee zeros. The theorem establishes that theady appeared in R€B]. It is clear that Eqs(2) and(3) are
Yang-Lee zeros are located on the unit cirflg|=1, k  useful whenever we have a closed expression for the free
=1,...n. Here,n is the number of sites of the lattice energies of the different phases of the system. In the case of
whose details such as coordination number and topology an@e two-dimensional Ising model in the presence of a mag-
not important for the proof. The symmetry under a change ohetic field, although we do not have exact expressions for the
sign of the magnetic field— 1/u is a key factor but itis not free energies, we can use low temperature expansions
sufficient for the proof. The proof is a bit technical and (LTE’s) and the symmetryd— —H as in Ref[2] to furnish
strongly depends on the form of the polynomig(u) in  a simple proof of the Lee-Yang theorem valid in the thermo-
the partition function. A simpler proof would certainly be dynamic limit and for low temperatures. In this work, we
welcome. The authors of R42] have suggested an analytic apply the same ideas for a particular case of fluctuating ran-
way to find the location of the partition function zeros. It is dom lattice. For such lattices, no circle theorem has been
assumed that for a system defined in a periodic voli¥ne proven. The spin degrees of freedom are placed on the ver-
=LY% with r different phases, it is possible to write down the tices of Feynman diagrams that are themselves dynamical
partition function of the system in terms of some functionsdegrees of freedom and need to be summed over in the par-
fi(I=1,...r) as follows: tition function with appropriate combinatorial factors. In the
case where the diagrams have double lines and are generated
by a randonmN X N matrix model(see Refs[4,5]), their sum
mimics, in the continuum limit, the Ising model on random
surfaces(two-dimensional gravity Early [6,7] and recent
[8] numerical results on graphs of planar topology indicate
that the Yang-Lee zeros lie on the unit circle although no
whereq;, is the degeneracy of the corresponding pHased circle theorem exists in this case. Notice that the form of
f, is interpreted as its metastable free energy. The qudrdity polynomials used in the proof of the Lee-Yang theorem is
is of the order of correlation length, while=minRe(f,). not preserved by their linear combinations. However, we be-
lieve that there might be a generalization of the circle theo-
rem for the new class of polynomials obtained by linear
*Email address: Iclaudio@fatecsp.br combinations with positive coefficients of partition functions
"Email address: dalmazi@feg.unesp.br of the Ising type. In fact, further support to this conjecture

r

Z= 2 qle—ﬁvﬁ + O(e— L/Loe—ﬁVf), (1)
=1
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has been given in Ref9], where we studied the effect of of the Potts model, we have not been able to promote our
topology of the graphs on the position of the Yang-Lee zeroslow temperature results to an exact level, but perturbatively
We have noticed that changing from the planar to the torusve show that the Yang-Lee zeros should lie outsidet
topology, the Yang-Lee zeros remained on the unit circleclose t9 the unit circle for low temperatures. The precise
with a small change in their positions, which is in agreementocation of the zeros seem to change with the temperature in
with the existence of an underlying robust theorem. Furthera complex way. We also display numerical results in agree-
more, in order to take the continuum limit we take largement with our analytic findings.

matricesN—  that allows one to findsee Ref[4]) with the

help of the orthogonal polynomial technique a closed expres- ||, THE PARTITION FUNCTION ON THIN GRAPHS

sion for the free energy even in the presence of magnetic

field. Thus, an analytic study of the free-energy singularities We can define the-state Potts model as a generalization
is possible and leads one to pure imaginary values for thef the Ising model =2), where on each site of the lattice
magnetic fieldsee Ref[6]), i.e.,|u=1. Of course, this is there is a spin degree of freedamthat can takey different
only correct in the thermodynamic limit. On the other hand,valuesoc=1,2, ... g. By summing over all spin configura-
the same issue of Yang-Lee zeros on a dynamical lattice cafPns{o;} on a given static lattic&, of n vertices, we obtain

be studied in a simplified model of thin graphs where matri-the partition functionZ,(G,). In the presence of a static
ces become numberdl& 1) and our final partition function magnetic fieldH in the o=1 direction, we have

becomes a linear combination of partition functions on N

single-line Feynman diagrams. In this case, no random sur-

face interpretation exists and the model exhibits a ferromag- Zq(Gn):{;} ex ﬂ%‘g) O, *”j+2HZI Orop (4
netic phase transition with mean field exponents, see Ref. ' ’

[_19], and references therein. Once again numerical results fqghere > ;) is a sum over all bondgépropagators of G,
finite number of vertices1 indicate the unit circle as the jncluding loop bonds which connect a sitertex to itself.
locus of the Yang-Lee zerd9]. However, since we do not Here, we are interested in the case where the lattice is a
have a random surface interpretation, the results of R&f. gynamical degree of freedom and the final partition function

do not go through the case of thin graphs. In particular, thgs optained by summing over &B,, with n vertices:
location of the Yang-Lee zeros is not known even in the

thermodynamic limit. In this work, we analyze this question K(n)

starting from a closed expression for the free energy of the zW=3 z,GW). (5)
model obtained in the thermodynamic limit by means of a k=1
saddle point approximation both for the Ising and the Potts )
model. Then, we use the destructive interference equations &f U cgge,K(n) will be the tOt"’;I number of Feynman
Ref. [2] to find out the location of the Yang-Lee zeros. Un- 9raphsGy” with n cubic vertices$® and no external legs.
fortunately, the presence of a magnetic field complicates thdhis clearly includes graphs of different topologies. Each
form of the resulting expression for the free energy, but anZq(GS”) as well asZ{” will be proportional to a polyno-
argument based on low temperature expansions and a syriial P,(u) in the fugacityu=e®". We take cubic vertices,
metry (H— —H) between different saddle point solutions Since these are the simplest ones after the trivial quadratic
will allow us to prove that the Yang-Lee zeros of the Ising case¢?, which corresponds to B=1 lattice. The partition
model on thin graphs should be on the unit circle in thefunCtiOﬂSZg") can be generated by integrating ovprero-
thermodynamic limit. The proof is exact for the whole rangedimensional fieldsX,, ... X, representing the different

of temperatures for which the LTE’s converge. For the casespin statesr=1,2, ... g, respectively,

q Zg q
> i2—2c|2J xix,-—?(e"‘“xiJri_Ez x?) ]

J oo -
e —_
dg pex 2

Z(Zn):l
IRy g2+

q , (6)
2‘1 XZ-2c2, XiX;

1>]

1
2

whereDu=1I{_,dX; and T, is a numerical factor indepen- can write the total number of vertices as.2The constant
dent of the magnetic field and the temperature, which is negyj| be related to the temperature. To each cubic veré¥) (
essary to get rid of the bad asymptotic behavior of the unrepresenting a spin in the direction of the magnetic field,
decoratedg® graphs. The contour integral is necessary tothere will be au=e?" factor in agreement with the paramag-
single out the terng®" containing 21 cubic vertices. Notice netic interaction term in Eq4). The quadratic terms in the
thatzg“) vanishes for odd number of vertices; therefore, weargument of the exponentials in E@) are responsible for
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the free propagator&X;X;) (or bonds(c;;)) between they ~ =xandX,=y, we have, respectively, the saddle point equa-
different vertices that associate with the states Taking  tONS 9xS=0=4,S:
ratios of the propagators and comparing with the ratios of the

corresponding Boltzmann weights of E¢), we identify the

parameterc with a function of the temperature as follows.

The action in the numerator of E¢G) can be written as

X—Cy=ux?,
y—cx=y>. (13

1 g q Using these equations we can write down the action at the
_ 2H y3 3 saddle poin{12] in a quadratic form:
Sg—EHZZl xiKijxj—g(e '*leri:E2 xi), (7) poin{12] in a quadrati
S=L[x?+y?—2cxy]. (14)
where we have introduced the kinetip<q matrix Kj; =
—c, if i#j and K;;=1. We can check that d&t=(1 From Eq.(13) we have
+¢)97 11— (q—1)c]. The propagators are given by the el-

ements of the inverse matrig;;*=(detk) 'c if i#] and x=(1/lc)(y—y?), (15
K;'=(detk) {1—(q—2)c]. Therefore, using the Boltz- ) .

mann weights from Eq(4) at vanishing magnetic field we uy(1-y)*+e(y—1)+c’=0. (16)
have

In the absence of magnetic field€ 1), the solutions of Eq.
(16) simplify (see Ref[13]) and we have two low tempera-

(XiX;) c efilH=0 . i - :
= = — =g F (8)  ture solutions below the critical value;,=1/3 and a high
(XiXj) [1-(a=2)c] gFiH=0) temperature(HT) solution valid for the entire range<6c
=1:
and, consequently,
.=3[1+cF(1-3c)(1+c)], (17
c=(ef+q-2)"1. ) Yir==3[ ( ( ]
=1-c. 18
Therefore, corresponding to<OT <o we have, respectively, Yt ¢ (18
the compact range8c=<1/(q—1). Defining the magnetization
In the thermodynamic limih—c, one can evaluate the
free energy < W
=\ ===/ (19
1 (ux+y?)
(L)) I— (2n)
fo = 2nIann (10

we can check thay, +, andy t_ correspond, respectively,

by means of a saddle point approximation as follows. Thé0 M>1/2 and m<1/2. Both solutions collapse at
fist step is to rescale the zero-dimensional fiels ~M(Xut,Ynr)=1/2 for c=1/3. Substituting Eqs(17), (18),

_(1/g)%; such that S,(%, U,0)— (1/g%) Sg:l(’;(i u,0). and (15) back in Eq.(14), we have

Next, we decouple the contour integral over the coupling (1+¢)2(1-2c)
from the integral over the zero-dimensional fields by a ~S,_T=T, (20
change of variablegﬂﬁg]\/sg:l. Finally, we have
- 1-c)®
1 1 _(
— i _ —nlinS,— - SHT_ . (21)
fq Jerl 2n|nj Due g 1+O(n) . (1 3

o ) Notice that both low temperature solutions have furnished
Therefore, the free energy per site is given in the thermody,Ehe same actiofs,
namic limit by [11] T

The presence of a nonvanishing magnetic fialds(Q)
makes the solution of the cubic equati@i6) awkward and
not very informative. We have solved E(.6) instead as a
Taylor expansion around= 0 (LTE). We found three expan-
sionsy, t+ andyyr which reduce to Eqs(17) and (18) at
u=1. They furnish the following actions :

fo=3InS,_y, (12

where~Sg:1 corresponds t&y- at a solution of the saddle
point equationsaXng=l=0. Henceforth, it is always as-
sumed thag=1 and we will treat thej=2 (Ising) state and

the g=3 state Potts model separately. _ 1 c2 ¢ (u-1)c*

Q= —————+ ————+0(c%), (22
" 6w 2u? 3ul 2u? (), (2
I1l. ISING MODEL
Aligning the magnetic field in the direction of;, which % _1 ¢ ud® (w-1)cf LO(ch), (23
is represented by the field;, and using the notatioix, LT-"6 2 3 2 ’
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3 1+u? c+(1+u2)c2+(u“—3u2+1)c3 % (u0) 1~S (1 ) 33
= u,c)=—Syt| —.c|.
T eu2 U 2u? 3ud " w2

(u?—1)%(1+u?c*
+

2u?

Putting back in the definition of the free energy and using
5 2 .
(c®). (24 Eq. (27), we obtain
1
cl.
u :|

Clearly,S 1. andS r_ collapse into Eq(20) atu=1. For  2(f,+ —f,r.)=Inu?+|In> a(uc"—In> a,
u>1(H>0), f 1, <f_1_ and the system is magnetized in n=0 n=0
the direction of the magnetic fieldk(direction, while the (34)
situation is reversed far<1(H<0) as expected. In order to

locate the Yang-Lee zeros @ in the thermodynamic Usinga,=1/6 andu=pe'?, after expanding the logarithms
limit, we first assumeu=pe'? and then solve Eqg2) and  we deduce

(3):
® B(n)
Re(fr, —fLr-)=0, (25 2Rafir —fir)=2Inp+ 2, ¢" X Ay
~ (2k—1) 1
Imf _=Imf .+ —,BVW (26) xoos(ke)( k__k , (35
p

There are two basic factors that will allow us to locate ex- )

actly the Yang-Lee zeros for the whole convergence range g¥hereB(n) and A, , are pure numerical factors. Thus, the
the LTE’s without really worrying about the numerical de- condition _Re(,_T,—f,_T_;)_:O imply that the zeros must be
tails of the coefficients of expansiof®2)—(24). First of all, O the unit circleu,=e'" in the thermodynamic limit. The
notice that forH——o (or u—0) the cubic equatior16) condition on the imaginary parts of the_ free energies will
has a unique solutiop(u— 0)=1—c? and, therefore, there locate the corresponding angle@_on the circle as a functlon
must be at least one LTE that is well behavedder0 and ©f the temperature. We emphasize that our proof of the circle
terminate at the term proportional 6. Of course, this can theorem for thing® graphs hold inside the convergence re-

only be identified withS,_;_ which implies that their coeffi- 90" ©F oW temperature expansions.

cients can only involve positive powers ofi.e.,
IV. q=3 STATE POTTS MODEL

z _ S n Using the notationX;=x,X,=y,X3=2, and fixing the
Sr-(u,0) HZO an(u)ct, @7 magnetic field once again along théirection, we derive the
saddle point equationsrxi8=0:
where eacla,(u) is a polynomial inu. The next important

factor is a symmetry of the saddle point equati@t® which x—c(y+2z)=ux?, (36)
relate solutions witiH>0 to solutions withH<<0. Namely,
Eq. (13) is invariant under y—c(x+2z)=y?, (37)
u—1/u, (28) z—c(x+y)=2° (38)
Xi(1/u,c)—uy;(u,c), (29 From the difference of Eq437) and (38), we deduce that
there are two groups of solutions, eithgrz or y+z=1
yi(1/u,c)—ux;(u,c), (30 +c:
where (;,y;) and (; ,y;) are, in principle, distinct solutions z=y, (39
of Eq. (13). Back in Eq.(14) we are led to the relation
y
~[1 x=5(1-c—y), (40)
Sl5c =u%S(u,c). (31
uy(y+c—1)%2+c(y+c—1)+2c3=0; (41)
The labeld,j indicate that the saddle point solutions on both
sides of Eq(31) do not need to be the same. From the first z=1+c—v, (42)
terms of the LTE’s in Eqs(22)—(24) and Eq.(31), we have
the identification below 1+[1-4uc(1+c)]¥2
Xi = 2u ’ (43)
B (00)- =5 (1 ) (32)
u,c)=—=S+_|-.,cl,
i w2l y?—(1+c)y+c(l+c+x)=0. (44)
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As in the Ising case, it is instructive to first look at the solu-

tions for vanishing magnetic fieldu&1). In this case, we

have from the first set of solutions two low temperature so-

lutions and one high temperature solution:

17[1—4c(1+c)]"?
YT+ =ZL7== 2 ,

1+2c*[1—-4c(1+c)]*?

XLTi: 2 Y (45)
XHT=YHT=2ZH7=1-2C. (46)
Defining the magnetization
3
m(g=3)={ —/———— ), 4
(a=3) u+y3+28 “0

we identify the labels LT and LT— with solutions such that
m>1/3 andm=1/3, respectively. The solution T meets

the high temperature solution witin=1/3 atc=1/5. The

second group of solution@3) does not furnish fou=1 any

new physical solution. Explicitly, for &c<(\2—1)/2, we

have from the second group two real solutions

_1-[1-4c(1+c)]"?

X =Y1= > , (48)
1+[1—-4c(1+c)]¥?
2 [ ( )] , 49
2
and
1+[1—4c(1+c)]*?
Xo= > , (50
1+c+|[1-4c(1+c)] |
Yo= > , (51
1+c—|[1-4c(1+c)]¥?—¢|

Notice that solutionX;,y;,2;) corresponds to a permutation
(X,2)—(z,x) of the solution LT+ given in Eg.(45), while
the solution &,,y,,Z,) coincides for Gsc<1/5 with the
permutation X,z) —(z,x) of the solution LT-. However, its
derivative is discontinuous at=1/5 and the solution devi-
ates from LT~ for 1/5<c<(\/2—1)/2. Concluding, we can
safely neglect both solutions of the second group.
Turning on the magnetic fieldu@ 1), the solutions of the

PHYSICAL REVIEW E 67, 066108 (2003

2+u c? )
+—3(1+2U+3U )
u

1+2u?
-c
6u? u?

3=

C3
+ F(8u4— 13u3—120%+2u+2)+0(c?), (53
u

3 1 c? c3(2+3u)+o( ) 54
S cY),

Yeu? w2 3u®

- 1 c3(11-8u)
52=§—C—CZ+T+O(C4). (55)

Expanding the second group of solutionst{z=1+c), we
have two possibilities

_ 1 c3(u+4)
%ZE—CZ—T‘FO(CL‘L (56)
- 1+u? 2 2+
o e ¢ C@HY L b (57

Next, we analyze the physical content of all those solutions.
First, we notice that in the limit of vanishing magnetic field,
the only solution that correctly reproduces the LTE of

S, 1(u=1c) is'S, and, therefore, we will identify it with the

LTE of Sy7(u,c). However, the limitu—1 cannot be used
to identify the remaining solutions, since the solutions of the

second groufs; andS, become identical, respectively, &
and'S, for u—1 which on their turn correspond to the LTE
of the physical solution§, 1. andS, t_ of theH=0 case"

In order to understand the meaning ®f—S,, we have to
look at the limitsH— +o (u—«) andH— —o (u—0).

The only LTE solution well behaved far— o« is'S; which
will be therefore identified with a strongly magnetized low
temperature solution, i.e., for this solution we expect

lim__ m=1. Foru—0, bothS, andS; are well behaved

and good candidates, bﬁg possesses the lowest free energy

(recall f~In'S) as one can check numerically. Therefdgg,
will represent the weakly magnetized phase which satisfies
Iimcﬁom=0. Thus, we have for the free energies of the

physical low temperature solutions:

cubic equation in Eq(40) become cumbersome. Once again lincidentally, we notice that the discontinuous behavior of solu-

we make a low temperature expansion arogsdd, which

tion (22) only appears for 1/5c<(y/2—1)/2 which is outside the

we display below after the substitution in the action. Fromconvergence region of the LTE of E(R2). Remember that for 0

the first group of solutionsy(=2z), we have three possibili-
ties

<c=<1/5, bothS,_;_ and Eq.(22) are identical, which explains why
S, and'S, become equal at=1 and low temperatures.
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-1 -0.5 0 0.5 1 . 0
Re(u) Re(u)

FIG. 1. Yang-Lee zeros of{®"} at zero temperature=0, for FIG. 2. Yang-Lee zeros of(Z"} at c=0.2 for graphs with 2
graphs with 2i=20 (¢ ), 2n=40 (X), and Zh=200 (O) vertices. = =20 (¢ ), 2n=40 (X), and Zh=200 (O) vertices, compared to
The closed curve is the unit circle. the saddle point resultsolid line) and to the unit circle(dashed

line).
- - ,. (4 5 N :
2(fr-—fro)=INS—InS=Inu+{ - —2u-2jc by a small amount, including the# terms makes the analytic

results closer to the numerical ones. Tdfeterms are quite
complex to be displayed here explicitly.

2 4
+3c* —2—u2+ ;2u-3 +0(c®).
u

V. T—w
(58

The results of the previous two sections hold for a range
We can find the position of the Yang-Lee zeros plugging of temperatures for which the LTE's converpi]. In gen-
=pe'’ in Eq. (58) and solving the destructive interference eral, we have not been able to go beyond these temperatures
equationd25) and(26). First, if we look at the leading terms analytically. One exception is the ca3e-« [or c— 1/(q
(zero temperatupewe will see from Eqs(25) and(26) that  —1)] for which a subtle decoupling of the zero-dimensional
the Yang-Lee zeros, in the thermodynamic limit, will be lo- fields take place for arbitrarg similar to what happens for
cated on the unit circlp=1 atT=0. Our finite size numeri- the Ising model =2), see Ref[9]. The key point is to take
cal calculations are in agreement with these expecta{s®es  a particular scaling for the couplirggappearing in actioii7)
Fig. 1). Adding the next to leading terms of the ordera3f  asc—1/(q—1). Namely, the matrix;; appearing in Eq(7)
we will still have the zeros on the unit circle, but if we has q—1 degenerate eigenvalues=1+c(j=12,...q9
further truncate the LTEs at® level the zeros will slightly —1), and the nondegenerate ang=1-—(gq—1)c. In order
move out the unit circle. Indeed, from Eq25) and(58) we  to decouple the fieldX; in the action, it is natural to diago-

have at the ordec?, nalize the matrix<;; through an orthogonal transformatfon
X;—A;X; and rescaleX;—X/\\;. The Jacobian is can-
e plcc—Inp] (59 celed out in the calculation a£{?" . After these changes,
cose= c3(2—p?) ) the action becomegepeated indices are summed gver
Imposing that—1<cos¢<1, we find numerically for &c 4% g (AgX)® AjXi 3
<0.5 such that £p<p*, wherep* increases with tempera- Sg=§1 > 34 \/—T +.=2 N (60)
ture. It is worth commenting that the right hand side of Eq. k ) k

(59 is a monotonically decreasing function pf Conse- ] o

quently, we have a closed curve outside the unit circle that i§Pparently, we have just transferred the mixing terms to the
nonsymmetric across the imaginary axis with the farthesfigher powers of the potential, however in the liffil- o
point from the origin being 4=p*,0=). In Fig. 2, both

our numerical and analytical results are overlapped. The fi-

nite size results seem to tend to el line) analytic one in  “Explicitly, the orthogonal matrix reada;;=0 if i=j+2, Ay

the thermodynamic limit. In Fig. 2, we have used the trun-=1/\/q, and Aj=—1Nj+j? if isj=q-1 or j/Nj+j? if i=]
cation at the ordec* instead of Eq(59), although they differ  +1<q.
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[c—1/(g—1)] we haver,—0, while all other eigenvalues low temperature expansions converge. For the case df the
remain finite. Thus, after the redefinitign-gAJ?, we have =3 Potts model, we do not have tié——H symmetry
in the above limit, anymore and our results were fairly perturbative in the tem-
perature. In this case, the zeros lie on closed curves that
q-1 $(|2 X2 g q _ depend on the temperature. These curves lie outside the unit
Sy(T—x)= E 5" ?q— §< U/-\qur 2 Ajsq Xg. circle and tend to the circle a6—0. Our numerical results
=1 I=2 61 for a small number of vertices seem to be in agreement with
(61) the analytic ones derived by means of the destructive inter-

Thus, we have decoupled the zero-dimensional fields on ference formulas of Ref2]. The numerical results were very
specific point in the parameter space, while preserving inforsimilar to the static lattice case treated in Réf5] for both
mation about nontrivial interacting terms. Clearly, this pro-the Ising and the=3 Potts model. We should mention that
cedure is only useful if we do not care about the singula@ part of the motivation for this work came from a recent
behavior of the original variablX,. This is precisely the progress(see Refs[10,8)) on using the destructive interfer-
case of Eq(6). Indeed, the Jacobian frod, to X; , is sin- ence formulas of Ref2] to find analytically the exact curves

gular in the limitT— o0 but it cancels out because of the ratio formed by the Fisher zer_oé:omplex temperaturgf the
in Eq. (6) SinceA,,=1//q, we obtain g-state Potts model on thin graphs. However, the results of
. |q_ y

Refs.[10,8] were derived foH =0, and the presence of the

a2 5 magnetic field complicates the form of the solutions such
S(T—o)=>, —— (y+q— 1)X3- (62  that we had to use low temperature expansions. As a further
=12 3¢%? work, one might look at the Yang-Lee zeros for complex

. . . . . . temperatures as in Rdfl6] as well as other types of verti-
Substituting this action in Eq(6), the integrations over oo Finally, we mention that, as in Ré€], we have also

X1, ... Xq-1 cancel out leaving us with an expression thatjgoked at connected partition functions obtained by first tak-
is finite in the limit c—1/(q—1). From theg® term, we  ing the logarithm of the ratio of integrals in E¢f) and then

have developing the contour integral. The results for the position

- of the Yang-Lee zeros were qualitatively similar to the ones

ZEN(T—o0) =T (u+q-1)", (63 reported here. We hope to return in the future to the open

- problem of proving the circle theorem for the Ising model on
whereT, is a numerical factor independent of the magneticrandom lattices with finite number of vertices.
field and the temperature. Therefore, we conclude that the
Yang-Lee zeros of thep-state Potts model on thin graphs
coalesce exactly at the point=1—q asT—®. The same ACKNOWLEDGMENTS
result is valid on a static latticgl5]. Again, our numerical

calculations confirm this analytic proof. The authors would like to thank Nelson A. Alves for use-

ful discussions and collaboration in early stages of this work
and also Professor D. J. Johnston for some useful email ex-
change. L.C.A. would like to thank the Mathematical Phys-
We have proved that in the thermodynamic limit, the ze-ics Department of USP af 8&Paulo for their kind hospital-
ros of the partition function of the Ising model on thin graphsity. This work was partially supported by FAPESP, Grant
lie exactly on the unit circle in the complex fugacity plane. Nos. 00/03277-3L.C.A.) and 00/12661-1D.D.), and CNPq
Our proof is exact in the range of temperatures for which thgD.D.).

VI. CONCLUSION

[1] T.D. Lee and C.N. Yang, Phys. Re&7, 410(1952. B: Field Theory Stat. Sys680[FS], 739 (2000.

[2] M. Biskup, C. Borgs, J.T. Chayes, L.J. Kleinwaks, and R.[10] B.P. Dolan, W. Janke, D.A. Johnston, and M. Stathakopoulos,
Kotecky, Phys. Rev. Lett84, 4794(2000. J. Phys. A34, 6211(2002).

[3] C. Itzykson, R.B. Pearson, and J.B. Zuber, Nucl. Phys. B:[11] C. Bachas, C. de Calan, and P. Petropoulos, J. Phy&7,A
Field Theory Stat. SysR20[FS8|, 415(1983. 6121(1994).

[4] V.A. Kazakov, Phys. Lett. BL19 140 (1986. [12] V.A. Kazakov, Nucl. Phys. BProc. Supp). 4, 93 (1988.

[5] D. Boulatov and V.A. Kazakov, Phys. Lett. B36, 379(1987). [13] D.A. Johnston and P. Plechac, J. Phys3G) 7349(1997).

[6] M. Staudacher, Nucl. Phys. 836, 349 (1990. [14] G. Bonnet, Phys. Lett. B59, 575(1999; B. Eynard and G.

[7] 3. Ambjorn, K.N. Anagnostopoulos, and U. Magnea, Nucl. Bonnet, ibid. 463 273 (1999; P. Zinn-Justin, e-print
Phys. B(Proc. Supp). 63, 751(1998; Mod. Phys. Lett. A12, cond-mat/9903385; G. Bonnet and F. David, Nucl. Phys. B:
1605(1997. Field Theory Stat. Sysb52[FS], 511(1999.

[8] W. Janke, D.A. Johnston, and M. Stathakopoulos, Nucl. Phys[15] S.-Y. Kim and R.J. Creswick, Phys. Rev. Leifl, 2000(1998.
B 614, 494 (2001). [16] V. Matveev and R. Shrock, Phys. Rev5B, 254(1996); Phys.

[9] L.C. de Albuquerque, N.A. Alves, and D. Dalmazi, Nucl. Phys. Lett. A 215 271(1996.

066108-7



